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What is it all about?

Quantum circuits are a rigourous graphical language used to represent

quantum algorithms.

P(π)

H

H

Just like boolean circuits are a rigourous graphical language used to rep-

resent classical algorithms.
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Quantum circuits as a graphical language

Quantum circuits are generated by the universal gateset

H , P(φ) , , φ

and can be composed sequentially with ◦ and in parallel with ⊗ as

◦ = and P(φ) ⊗ =
P(φ)

to form new circuits.(
◦
(

⊗ H
))

=
H
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Standard interpretation of quantum circuits

Interpretation

JC2 ◦ C1K = JC2K ◦ JC1K JC1 ⊗ C2K = JC1K ⊗ JC2K

J K = (1) J φ K = (e iφ)

J K = ( 1 0
0 1 )

q
H

y
= 1/

√
2
(
1 1
1 −1

) q
P(φ)

y
=
(
1 0
0 e iφ

)
s {

=

(
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

) s {
=

(
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)

circuits ̸= matrices
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Definition “up to deformation”

Formally, quantum circuits are defined as a symmetric monoidal category,

which ensure some deformation equations such that

P(φ) ◦ = P(φ) or =

This framework captures the intuitive behaviour of wires by ensuring that

circuits are defined “up to deformation”.

H

P(π2 )

=

H P(π2 )
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Other gates as shortcut notations

Other usual gates can be defined as shortcut notation by composition of

the generators.

Z := P(π) X := H Z H

RX (θ) := H P(θ)−θ/2 H
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Controlled gates as shortcut notations

We use the standard bullet notation for controlled gates.

P(φ)

Controlled gates can be constructed inductively. The (n + 1)-controlled

gate is a shortcut containing several instances of n-controlled gates.

P(φ)

:= P(φ2 )

P(φ2 ) P(-φ2 )

Note that unfolding the inductive definition divides the parameters by 2.
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Motivations

Distinct circuits can have the same interpretation.

u

v
P(π2 )

P(π2 )

P(-π2 )

}

~ =

u

v
HH

}

~ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1



Given a quantum algorithm, which circuit is the best?

Motivations:

- Resource optimisation (for instance the number of gates).

- Hardware-constraint satisfaction (for instance topological constraints).

- Verification, circuit equivalence testing.
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Using equations to transform circuits

We can use simple equations such that,

H H
(H2)
= ,

P(φ)

(G)
=

P(φ)

and
HH

(CZ)
=

P(π2 )

P(π2 )

P(-π2 )

to derive new equations. For instance,

H

H

(H2)
=

H

HHH

(CZ)
=

H

P(π2 )H

P(π2 )

P(-π2 )

(G)
=

H

P( π
2)H

P(π2 ) P(-π2 ) (CZ)
=

H

H

HH (H2)
=

H

H
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Soundness and completeness

Is there an equational theory (i.e. a set of axioms) Γ from which we can

derive any true equation and only true equations?

Soundness

Any derivable equation is true.

∀C1,C2 : Γ ⊢ C1 = C2 =⇒ JC1K = JC2K

Completeness

Any true equation is derivable.

∀C1,C2 : JC1K = JC2K =⇒ Γ ⊢ C1 = C2

[Clément,Heurtel,Mansfield,Perdrix,Valiron’2023]

The first complete and sound equational theory.
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Complete and sound equational theory

2π = φ1 φ2 = φ1+φ2 H H = P(0) =

=
P(φ)

=
P(φ)

=

X
=

XX

HH
=

P(π2 )

P(π2 )

P(-π2 )

H = P(π2 ) RX (
π
2 ) P(π2 ) RX (α1) P(α2) RX (α3) = P(β1)β0 RX (β2) P(β3)

= =

RX (-θ)

RX (θ)

RX (θ
′)

RX (θ
′)H H

=
RX (-θ)

RX (θ)

RX (θ
′)

RX (θ
′) HH

H

RX (-θ)

RX (θ)

H

RX (θ)

RX (-θ)

RX (θ
′)

RX (θ
′)

H

RX (-θ
′)

RX (-θ
′)

H

=
H

RX (-θ)

RX (θ)

H

RX (θ)

RX (-θ)

RX (θ
′)

RX (θ
′)

H

RX (-θ
′)

RX (-θ
′)

H

RX (γ1)

P(γ2) RX (γ3)

RX (γ4) =
P(δ1) P(δ2) RX (δ3)

RX (δ4)

P(δ5) RX (δ6) P(δ7)

P(δ8)

P(δ9)
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Euler decomposition equation

This equation follows from the well-known Euler-decomposition which

states that any unitary can be decomposed, up to a global phase, into

basic X- and Z-rotations.

RX (α1) P(α2) RX (α3) = P(β1)β0 RX (β2) P(β3)

It represents a family of equations: there are explicit trigonometric relations

to compute β0, β1, β2, β3 as functions of α1, α2, α3.

By choosing specific parameters, we can retrieve simple equations, such

that

P(φ1) P(φ2) = P(φ1+φ2) X P(φ) X = φ P(−φ)

11 / 25
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The weird equation

RX (γ1)

P(γ2) RX (γ3)

RX (γ4) =

P(δ1) P(δ2) RX (δ3)

RX (δ4)

P(δ5) RX (δ6) P(δ7)

P(δ8)

P(δ9)

Similarly to the Euler decomposition equation, it represents a family of

equations: there is an instance of this equation in the equational theory

for any number of wires n ≥ 2 and for any parameters γ1, γ2, γ3, γ4 ∈ R.

The presence of such weird equation is the consequence of the technique

used to prove completeness: the proof is based on back and forth transla-

tions between quantum circuits and optical circuits.
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Some easy and some intricate equations
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Simplifications
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Killing the remaining weird rule

RX (γ1)

P(γ2) RX (γ3)

RX (γ4) =

P(δ1) P(δ2) RX (δ3)

RX (δ4)

P(δ5) RX (δ6) P(δ7)

P(δ8)

yy
RX (γ1)

RX (γ3)

RX (γ4) =

RX (δ3)

RX (δ4)

RX (δ6)yy

P(2π)

=
...

15 / 25



Killing the remaining weird rule

RX (γ1)

P(γ2) RX (γ3)

RX (γ4) =

P(δ1) P(δ2) RX (δ3)

RX (δ4)

P(δ5) RX (δ6) P(δ7)

P(δ8)

yy
RX (γ1)

RX (γ3)

RX (γ4) =

RX (δ3)

RX (δ4)

RX (δ6)yy

P(2π)

=
...

15 / 25



Killing the remaining weird rule

RX (γ1)

P(γ2) RX (γ3)

RX (γ4) =

P(δ1) P(δ2) RX (δ3)

RX (δ4)

P(δ5) RX (δ6) P(δ7)

P(δ8)

yy
RX (γ1)

RX (γ3)

RX (γ4) =

RX (δ3)

RX (δ4)

RX (δ6)yy

P(2π)

=
...
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Towards the limit of simplification

2π = φ1 φ2 = φ1+φ2 H H = P(0) =

P(φ)
=

P(φ)
=

HH
=

P(π2 )

P(π2 )

P(-π2 )

H = P(π2 ) RX (
π
2 ) P(π2 ) RX (α1) P(α2) RX (α3) = P(β1)β0 RX (β2) P(β3)

P(2π)
= ...

}
n ≥ 3

Question: Can we simplify the equational theory even more?

Theorem

This equational theory is complete, sound and minimal.

Minimality

All equations are independents.

∀(C1 = C2) ∈ Γ : Γ\{C1 = C2} ⊬ C1 = C2
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Necessity of the simple equations

2π = φ1 φ2 = φ1+φ2 H H = P(0) =

P(φ)
=

P(φ)
=

HH
=

P(π2 )

P(π2 )

P(-π2 )

H = P(π2 ) RX (
π
2 ) P(π2 ) RX (α1) P(α2) RX (α3) = P(β1)β0 RX (β2) P(β3)

P(2π)
= ...

}
n ≥ 3

For instance, the blue equation is the only one that does not preserve the

parity of the number of swap gates.

17 / 25
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Necessity of the Euler decomposition equation

Equation (E) represent a family of equations and is the only equation

involving non-linear computations.

RX (α1) P(α2) RX (α3)
(E)
= P(β1)β0 RX (β2) P(β3)

Maybe (E) is in the equational theory only to retrieve simple equations

such that

P(φ1) P(φ2)
(P+)
= P(φ1+φ2) X P(φ) X

(P−)
= φ P(−φ)

Proposition

Let Γ be a set of equations containing

• all the equations of the equational theory except (E),

• any set of instance of (E) of cardinality strictly less than 2ℵ0 ,

• all instances of (P+) and (P−).

Then there exists an instance of (E) which is not a consequence of Γ.

Hence, uncountably many instances of (E) are requiered.
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Unboundedness of the equational theory

Every instances of
P(2π)

= ...
}
n ≥ 3 are necessary (for every n ≥ 3).

Theorem

There is no complete equational theory for quantum circuits made of

equations acting on a bounded number of wires.

More precisely, any complete equational theory for quantum circuits has

at least one equation acting on n wires for any n ∈ N.
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Proof sketch [1/2]

Alternative interpretation

For any k ∈ N, for any quantum circuit C , let JCK♯k ∈ [0, 2π) be

inductively defined as

JC2 ◦ C1K
♯
k = JC1 ⊗ C2K

♯
k = JC2K

♯
k + JC1K

♯
k mod 2π

J K♯k = J K♯k = 0 J φ K♯k = 2kφ mod 2π
q

H

y♯

k
= 2k−1π mod 2π

s {♯

k

=

s {♯

k

= 2k−2π mod 2π
q

P(φ)
y♯

k
= 2k−1φ mod 2π

Intuition: JCK♯n = arg(det(JCK)) for any n-qubit quantum circuit C .

More precisely, for any n-qubit quantum circuit C and k ≥ n,

JCK♯k = 2k−n arg(det(JCK))
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Proof sketch [2/2]

Lemme

For any n-qubit quantum circuits C1,C2 and k ≥ n,

JC1K = JC2K =⇒ JC1K
♯
k = JC2K

♯
k

Thus, any sound equation involving circuits acting on at most n− 1 wires

is also sound according to J·K♯n−1.

However,

s

P(2π)

}
n

{♯

n−1

= π ̸= 0 =

s
...

}
n

{♯

n−1

Hence
P(2π)

= ...
}
n cannot be derived from an equational theory

containing only equations acting on strictly less than n wires.

21 / 25



Proof sketch [2/2]

Lemme

For any n-qubit quantum circuits C1,C2 and k ≥ n,

JC1K = JC2K =⇒ JC1K
♯
k = JC2K

♯
k

Thus, any sound equation involving circuits acting on at most n− 1 wires

is also sound according to J·K♯n−1.

However,

s

P(2π)

}
n

{♯

n−1

= π ̸= 0 =

s
...

}
n

{♯

n−1

Hence
P(2π)

= ...
}
n cannot be derived from an equational theory

containing only equations acting on strictly less than n wires.

21 / 25



Proof sketch [2/2]

Lemme

For any n-qubit quantum circuits C1,C2 and k ≥ n,

JC1K = JC2K =⇒ JC1K
♯
k = JC2K

♯
k

Thus, any sound equation involving circuits acting on at most n− 1 wires

is also sound according to J·K♯n−1.

However,

s

P(2π)

}
n

{♯

n−1

= π ̸= 0 =

s
...

}
n

{♯

n−1

Hence
P(2π)

= ...
}
n cannot be derived from an equational theory

containing only equations acting on strictly less than n wires.

21 / 25



Proof sketch [2/2]

Lemme

For any n-qubit quantum circuits C1,C2 and k ≥ n,

JC1K = JC2K =⇒ JC1K
♯
k = JC2K

♯
k

Thus, any sound equation involving circuits acting on at most n− 1 wires

is also sound according to J·K♯n−1.

However,

s

P(2π)

}
n

{♯

n−1

= π ̸= 0 =

s
...

}
n

{♯

n−1

Hence
P(2π)

= ...
}
n cannot be derived from an equational theory

containing only equations acting on strictly less than n wires.

21 / 25



Discussion of the theorem

Possible weakness: JCK♯k is closely related to the determinant of JCK.
What if we consider quantum circuits up to global phases?

−→ The theorem still holds!

Possible weakness: The choice of the generators H , P(φ) , , φ

may seem arbitrary. What if we take another univeral gate set?

−→ The theorem still holds! (for unitary quantum circuits.)

22 / 25



Discussion of the theorem

Possible weakness: JCK♯k is closely related to the determinant of JCK.
What if we consider quantum circuits up to global phases?

−→ The theorem still holds!

Possible weakness: The choice of the generators H , P(φ) , , φ

may seem arbitrary. What if we take another univeral gate set?

−→ The theorem still holds! (for unitary quantum circuits.)

22 / 25



Discussion of the theorem

Possible weakness: JCK♯k is closely related to the determinant of JCK.
What if we consider quantum circuits up to global phases?

−→ The theorem still holds!

Possible weakness: The choice of the generators H , P(φ) , , φ

may seem arbitrary. What if we take another univeral gate set?

−→ The theorem still holds! (for unitary quantum circuits.)

22 / 25



Discussion of the theorem

Possible weakness: JCK♯k is closely related to the determinant of JCK.
What if we consider quantum circuits up to global phases?

−→ The theorem still holds!

Possible weakness: The choice of the generators H , P(φ) , , φ

may seem arbitrary. What if we take another univeral gate set?

−→ The theorem still holds! (for unitary quantum circuits.)

22 / 25



Discussion of the theorem

Possible weakness: JCK♯k is closely related to the determinant of JCK.
What if we consider quantum circuits up to global phases?

−→ The theorem still holds!

Possible weakness: The choice of the generators H , P(φ) , , φ

may seem arbitrary. What if we take another univeral gate set?

−→ The theorem still holds! (for unitary quantum circuits.)

22 / 25



Interesting corollaries

Corollary

Any complete equational theory for the fragment where parameters are

multiple of π
2n must contain at least one equation acting on n+ 2 wires.

For Clifford quantum circuits (case n = 1),

−→ The bound has been reached [Selinger’2015].

For Clifford+T quantum circuits (case n = 2),

−→ There exists equations that are not provable in the equational theory

for 2-qubit Clifford+T of [Bian,Selinger’2022].
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Extension to quantum circuits with ancillae

Quantum circuits with ancillae are generated by

H , P(φ) , , φ

together with

and

respectively denoting qubit initialisation and qubit termination.

(The generator can only be applied to qubits in the |0⟩-state.)

Semantics

We extend J·K with J K = |0⟩ and J K = ⟨0|.

Universal for isometries
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Boundedness of the equational theory with ancillae

Theorem [Clément,Delorme,Perdrix,Vilmart’2024]

Adding those three equations makes the equational theory complete for

quantum circuits with ancillae.

= , P(φ) = , =

Using ancillae, we can build controlled gates without dividing the angles.

P(φ)

:= P(φ2 )

P(φ2 ) P(-φ2 )

=

P(φ)

In these more general settings,
P(2π)

= ...
}
n is derivable for n ≥ 4.

Hence, using ancillae, there is a complete equational theory made of equa-

tions acting on at most 3 wires.
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Alexandre Clément, Noé Delorme and Simon Perdrix

25 / 25

https://arxiv.org/abs/2311.07476

