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What is it all about?

Quantum circuits are a rigourous graphical language used to represent

quantum algorithms.
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What is it all about?

Quantum circuits are a rigourous graphical language used to represent
quantum algorithms.
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Just like boolean circuits are a rigourous graphical language used to rep-
resent classical algorithms.
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Quantum circuits as a graphical language

Quantum circuits are generated by the universal gateset
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Quantum circuits as a graphical language

Quantum circuits are generated by the universal gateset
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and can be composed sequentially with o and in parallel with ® as

—

—  —— . B P(p)
& & - nd e =

to form new circuits.
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Standard interpretation of quantum circuits

Interpretation

[[Cz o Cl]] = [[C2ﬂ o |IC1]] [[Cl ® CQH = [[Cl]] ® [[C2ﬂ
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Standard interpretation of quantum circuits

Interpretation
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Definition “up to deformation”

Formally, quantum circuits are defined as a symmetric monoidal category,
which ensure some deformation equations such that

P(¢)f- o = —P(p) or >®< =
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Definition “up to deformation”

Formally, quantum circuits are defined as a symmetric monoidal category,
which ensure some deformation equations such that

P(p)- o = JP(p) or XX =

This framework captures the intuitive behaviour of wires by ensuring that
circuits are defined “up to deformation”.
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Other gates as shortcut notations

Other usual gates can be defined as shortcut notation by composition of
the generators

1z = PE)- X = HHZHAE

ARx O} = )
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Controlled gates as shortcut notations

We use the standard bullet notation for controlled gates.
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We use the standard bullet notation for controlled gates.

Controlled gates can be constructed inductively. The (n + 1)-controlled
gate is a shortcut containing several instances of n-controlled gates

Plp)-  ——PED-PCEHD-

6/25



Controlled gates as shortcut notations

We use the standard bullet notation for controlled gates.

Controlled gates can be constructed inductively. The (n + 1)-controlled
gate is a shortcut containing several instances of n-controlled gates.

Plp)-  ——PED-PCEHD-

Note that unfolding the inductive definition divides the parameters by 2.
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Distinct circuits can have the same interpretation.
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Distinct circuits can have the same interpretation.

100 0
P(3) I _fo 10 o0
FEISPEIS- e

Given a quantum algorithm, which circuit is the best?

Motivations:

- Resource optimisation (for instance the number of gates).

- Hardware-constraint satisfaction (for instance topological constraints).
- Verification, circuit equivalence testing.
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Using equations to transform circuits

We can use simple equations such that,
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Using equations to transform circuits

We can use simple equations such that,

G G) PP ()P

- drme - L]
and (C:Z) A

m - P(3)H b

to derive new equations. For instance,

DH|

8/25



Using equations to transform circuits

We can use simple equations such that,

() © -&PEI
HHH = = ) H =

o (2) —
HHDHH] PEIOPC -

to derive new equations. For instance,

()
D

8/25



Using equations to transform circuits

We can use simple equations such that,

and =

to derive new equations. For instance,
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Soundness and completeness

Is there an equational theory (i.e. a set of axioms) I' from which we can
derive any true equation and only true equations?
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Soundness and completeness

Is there an equational theory (i.e. a set of axioms) I' from which we can
derive any true equation and only true equations?

Soundness

Any derivable equation is true.
VG, 6 - THEG=6 = [G]=[C]

Completeness

Any true equation is derivable.
VCl, G : [[Cl]] = HCZ]] = TT-G=G

[Clément,Heurtel, Mansfield, Perdrix,Valiron’2023]
The first complete and sound equational theory.
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Euler decomposition equation

This equation follows from the well-known Euler-decomposition which
states that any unitary can be decomposed, up to a global phase, into
basic X- and Z-rotations.

—Rx(a1)HP(a2)HRx (a3)}- = —PBYHRx (B)HP(Bs)}-

It represents a family of equations: there are explicit trigonometric relations
to compute Bo, 81, B2, B3 as functions of aq, an, 3.
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Euler decomposition equation

This equation follows from the well-known Euler-decomposition which
states that any unitary can be decomposed, up to a global phase, into
basic X- and Z-rotations.

—Rx(a1)HP(a2)HRx (a3)}- = —PBYHRx (B)HP(Bs)}-

It represents a family of equations: there are explicit trigonometric relations

to compute Bo, 81, B2, B3 as functions of aq, an, 3.

By choosing specific parameters, we can retrieve simple equations, such
that

PleHPlea)- = —Plerteal XHPEHX = ® {P-e)-
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The weird equation

Similarly to the Euler decomposition equation, it represents a family of
equations: there is an instance of this equation in the equational theory
for any number of wires n > 2 and for any parameters ~y1,72,73, V4 € R.
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The weird equation

Similarly to the Euler decomposition equation, it represents a family of
equations: there is an instance of this equation in the equational theory
for any number of wires n > 2 and for any parameters ~y1,72,73, V4 € R.

The presence of such weird equation is the consequence of the technique
used to prove completeness: the proof is based on back and forth transla-
tions between quantum circuits and optical circuits.

12/25



ions

equat

v
=
o
102}

o
=
>,
7]
©
0
)
=
o

wn

P1tee

P(

Rx(B2)rP(83)

(51)

P

Rx(01)P(02)

3)
2

S)HRx(G)HP(

= P( o

HH-

13/25



[72]
€
=

t

Simplifica

= (ptee

P(

Rx(B2)rP(83)

()]

P

Rx(01)P(02)

3)
2

S)HRx )P

= P( T

HH-

1T

1

14 /25



[72]
€
=

t

Simplifica

21

%

%

P(¢)

Rx(52)-P ()

P(f1)

Rx(01)P(02)

)

Eley

P(

)

Eloy

Rx(

3)

= P( T

-

1T

1

14 /25



[72]
€
=

t

Simplifica

21

P(¢)

%

%

Rx(82)[P(533)

P(f1)

Rx(01)P(02)

)

Eley

P(

)

Eloy

Rx(

3)

= P( T

-

14 /25



Simplifications
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Killing the remaining weird rule

i Rx(l“/A) = i RXE‘)A) i
e
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Killing the remaining weird rule

Rell——Rx )} = ——3—Rx(8)
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Towards the limit of simplification
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Towards the limit of simplification
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Question: Can we simplify the equational theory even more?
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Question: Can we simplify the equational theory even more?

Theorem
This equational theory is complete, sound and minimal.
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Towards the limit of simplification

@ = I @ @ = @it AHHHE = —

T-T“: :D@

= ~Rx(e){Ploz){Rx(oa)}~ =

IS5

Question: Can we simplify the equational theory even more?

Theorem
This equational theory is complete, sound and minimal.

Minimality
All equations are independents.
v(C.].:Cl2)er . r\{C]_:Cé}}L C1:C2
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Necessity of the simple equations
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For instance, the blue equation is the only one that does not preserve the
parity of the number of swap gates.
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Necessity of the Euler decomposition equation

Equation (E) represent a family of equations and is the only equation
involving non-linear computations.

E
~Rx(er)HP(az)HRx (as)- & —P(BYHRx(B2)HP ()
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Necessity of the Euler decomposition equation

Equation (E) represent a family of equations and is the only equation
involving non-linear computations.
(B
Rx(e)HPea)HRx ()= = B {PBHRx(B)HP G-

Maybe (E) is in the equational theory only to retrieve simple equations
such that
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Necessity of the Euler decomposition equation

Equation (E) represent a family of equations and is the only equation
involving non-linear computations.
(3)
~Rx(an)HP(e)HRx ()l = B —{PBYHRx(B)HP(B3)]-

Maybe (E) is in the equational theory only to retrieve simple equations
such that

(P+) (P-)
=" Plrel- = @ e

Proposition

Let I be a set of equations containing
e all the equations of the equational theory except (E),
e any set of instance of (E) of cardinality strictly less than 2%,
e all instances of (P+) and (P_).

Then there exists an instance of (E) which is not a consequence of T.
Hence, uncountably many instances of (E) are requiered.
18/25



Unboundedness of the equational theory

Every instances of i = }n=3 arenecessary (for every n > 3).
P(2m —
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Unboundedness of the equational theory

Every instances of t = i }nz3 are necessary (for every n > 3).
P(2r) —_—

Theorem

There is no complete equational theory for quantum circuits made of
equations acting on a bounded number of wires.
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Unboundedness of the equational theory

Every instances of t = i }nz3 are necessary (for every n > 3).
P(2r) —_—

Theorem

There is no complete equational theory for quantum circuits made of
equations acting on a bounded number of wires.

More precisely, any complete equational theory for quantum circuits has
at least one equation acting on n wires for any n € N.
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Proof sketch [1/2]

Alternative interpretation
For any k € N, for any quantum circuit C, let [[C]]i € [0,27) be
inductively defined as
[Go Gl =[G ® Gl =[G} + [G]}, mod 27
[l =1—1i=0 [ol=2¢mod2r [{#]L=2""xmod2r
f #

Hgﬂ = HXH = 2k"271 mod 27 [[]]i — 251, mod 2

k k
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Proof sketch [1/2]

Alternative interpretation

For any k € N, for any quantum circuit C, let [[C]]i € [0,27) be
inductively defined as
[C o GI} = [G ® G} = [G]}, + [G]} mod 2r

i =[—Ii=0 [@i=2¢mod2r [{a]}=2""1m mod 2r
¢ ¢

Hgﬂ = HXH = 2k"271 mod 27 [[]]i — 251, mod 2

k k

Intuition: [[Cﬂun = arg(det([C])) for any n-qubit quantum circuit C.

More precisely, for any n-qubit quantum circuit C and k > n,

[C]% = 25" arg(det([C]))
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Proof sketch [2/2]

Lemme

For any n-qubit quantum circuits C;, G, and k > n,

[Gl=1G] = [al) =[Gl
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Proof sketch [2/2]

Lemme

For any n-qubit quantum circuits C;, G, and k > n,

[Gl=[c] = [ali=Icl

Thus, any sound equation involving circuits acting on at most n — 1 wires
is also sound according to [H]Ll.
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For any n-qubit quantum circuits C;, G, and k > n,

[Gl=[c] = [ali=Icl

Thus, any sound equation involving circuits acting on at most n — 1 wires
is also sound according to [H]Ll.

However,
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Proof sketch [2/2]

Lemme

For any n-qubit quantum circuits C;, G, and k > n,

[Gl=[c] = [ali=Icl

Thus, any sound equation involving circuits acting on at most n — 1 wires
is also sound according to []*_,.

However,
. # 7 #
|[ ' }n]] = T # 0 = |:|: : }n]]
P(2m) n—1 - n—1
Hence (- ) = 3 }n cannot be derived from an equational theory
P(2m

containing only equations acting on strictly less than n wires.
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Discussion of the theorem

Possible weakness: [[CM is closely related to the determinant of [C].
What if we consider quantum circuits up to global phases?
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Discussion of the theorem

Possible weakness: [[CM is closely related to the determinant of [C].
What if we consider quantum circuits up to global phases?

—— The theorem still holds!

Possible weakness: The choice of the generators , , , @
may seem arbitrary. What if we take another univeral gate set?

— The theorem still holds! (for unitary quantum circuits.)

22/25



Interesting corollaries

Corollary
Any complete equational theory for the fragment where parameters are
multiple of 55 must contain at least one equation acting on n + 2 wires.
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For Clifford quantum circuits (case n = 1),
— The bound has been reached [Selinger'2015].
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Interesting corollaries

Corollary

Any complete equational theory for the fragment where parameters are

U5

multiple of 55 must contain at least one equation acting on n + 2 wires.

For Clifford quantum circuits (case n = 1),
— The bound has been reached [Selinger'2015].

For Clifford+T quantum circuits (case n = 2),
— There exists equations that are not provable in the equational theory
for 2-qubit Clifford+T of [Bian,Selinger'2022].
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Extension to quantum circuits with ancillae

Quantum circuits with ancillae are generated by

SR = R G

24 /25



Extension to quantum circuits with ancillae

Quantum circuits with ancillae are generated by

SR = R G

together with

= and —
respectively denoting qubit initialisation and qubit termination.

(The generator — can only be applied to qubits in the |0)-state.)
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Extension to quantum circuits with ancillae

Quantum circuits with ancillae are generated by

SR = R G

together with

= and —
respectively denoting qubit initialisation and qubit termination.

(The generator — can only be applied to qubits in the |0)-state.)

Semantics
We extend [-] with [I-] = |0) and [+] = (0.

Universal for isometries

24 /25



Boundedness of the equational theory with ancillae

Theorem [Clément,Delorme,Perdrix,Vilmart’2024]
Adding those three equations makes the equational theory complete for
quantum circuits with ancillae.

}7
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Boundedness of the equational theory with ancillae

Theorem [Clément,Delorme,Perdrix,Vilmart’2024]

Adding those three equations makes the equational theory complete for
quantum circuits with ancillae.

}7
== " ) Plo)- = +— ) g =

d = JP(®) ‘ ‘ =
P(#) P(5)-D+P(-%) —1Pl)T—
In these more general settings, ' = : }n is derivable for n > 4.

—
Hence, using ancillae, there is a complete equational theory made of equa-
tions acting on at most 3 wires.
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