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What is it all about?

Quantum circuits are a rigourous graphical language used to represent

quantum algorithms.
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Just like boolean circuits are a rigourous graphical language used to rep-
resent classical algorithms.
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A Pl N ©
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Standard interpretation of quantum circuits

Interpretation

[[Cz o Cl]] = [[C2ﬂ o |IC1]] [[Cl ® CQH = [[Cl]] ® [[C2ﬂ
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Quantum circuits as a graphical language

Formally, quantum circuits are defined as a symmetric monoidal category,
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Quantum circuits as a graphical language

Formally, quantum circuits are defined as a symmetric monoidal category,
which ensure some deformation equations such that

P(p)- o = JP(p) or XX =

This framework captures the intuitive behaviour of wires by ensuring that
circuits are defined “up to deformation”.
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Controlled gates as shortcut notations

We use the standard bullet notation for controlled gates.
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Controlled gates as shortcut notations

We use the standard bullet notation for controlled gates.

Controlled gates can be constructed inductively. The (n 4+ 1)-controlled
gate is a shortcut containing several instances of n-controlled gates
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Distinct circuits can have the same interpretation.
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Distinct circuits can have the same interpretation.
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Given a quantum algorithm, which circuit is the best?

Motivations:

- Resource optimisation (for instance the number of gates).

- Hardware-constraint satisfaction (for instance topological constraints).
- Verification, circuit equivalence testing.
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Using equations to transform circuits

We can use simple equations such that,
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Using equations to transform circuits

We can use simple equations such that,
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Complete and sound equational theory

Is there an equational theory (i.e. a set of axioms) I' from which we can
derive any true equation and only true equations?
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Complete and sound equational theory

Is there an equational theory (i.e. a set of axioms) I' from which we can
derive any true equation and only true equations?

Soundness

Any derivable equation is true.
VG, 6 - THEG=6 = [G]=[C]

Completeness

Any true equation is derivable.
VCl, G : [[Cl]] = HCZ]] = TT-G=G

Previous work [Clément,Heurtel,Mansfield,Perdrix,Valiron LICS’23]:
The first complete and sound equational theory.

8/16



'23]

Rx(B2)rP(83)

(1),

@
zg,,

P

1

%

Rx(01)P(02)

)
S
=
>
Q.
>
I
=,
>
P
o
Q
=
-
®
£
2

=
P(v)
A=
X

)

Eley

@ @
X

LI

iy

HRx(3))

P(Z

&

-

Complete and sound equat

9/16



ions

equat

v
=
o
102}

o
=
>,
7]
©
0
)
=
o

wn

P1tee

P(

Rx(B2)rP(83)

(51)

P

Rx(01)P(02)

3)
2

S)HRx(G)HP(

= P( o

HH-

10/16



Rx(82)[P(533)

()]

@
zg,,

P

'24]

1

CDP LICS

%

Rx(01)P(02)

24

’
=
P(v)
A=
&

B Y = [
ko]
8 B
[
IR T I o
1 L
I Y B
I

&

-

Simplifications [CDPV CSL

11/16



Simplifications [CDPV CSL’24 , CDP LICS’24]
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Simplifications [CDPV CSL’24 , CDP LICS’24]
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Towards the limit of simplifications
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Towards the limit of simplifications
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Towards the limit of simplifications

@ = I @ @ = @it AHHHE = —
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Question: Can we simplify the equational theory even more?

Theorem
This equational theory is complete, sound and minimal.

Minimality
All equations are independents.
v(C.].:Cl2)er . r\{C]_:Cé}}L C1:C2
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Unboundedness of the equational theory

Every instances of i = }n=3 arenecessary (for every n > 3).
P(2m —
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Unboundedness of the equational theory

Every instances of t = i }nz3 are necessary (for every n > 3).
P(2r) —_—

Theorem

There is no complete equational theory for quantum circuits made of
equations acting on a bounded number of wires.

More precisely, any complete equational theory for quantum circuits has
at least one equation acting on n wires for any n € N.
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Proof sketch

Alternative interpretation

For any k € N, for any quantum circuit C, let [[C]]?( € [0,27) be
inductively defined as

[Go Gl =[G ® Gl = [G]: + [G] mod 2
EIE=1—1.=0 [@]. =2 mod2r [[]]i = 2K mod 27

Hgﬂﬁ N Hxﬂﬁ = 2% mod 2r [[]]i = 2"l mod 27

k k
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Alternative interpretation

For any k € N, for any quantum circuit C, let [[C]]?( € [0,27) be
inductively defined as

[Go Gl =[G ® Gl = [G]: + [G] mod 2
EIE=1—1.=0 [@]. =2 mod2r [[]]i = 2K mod 27

Hgﬂﬁ N Hxﬂﬁ = 2% mod 2r [[]]i = 2"l mod 27

k k

Any sound equation involving circuits acting on at most n— 1 wires is also
sound according to [[-M_l.

However,

[, - 20 - [0,
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Extension to quantum circuits with ancillae

Quantum circuits with ancillae are generated by

SR = R G
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respectively denoting wire initialisation and wire termination.
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Extension to quantum circuits with ancillae

Quantum circuits with ancillae are generated by

SR = R G

together with

= and —
respectively denoting wire initialisation and wire termination.

(The generator — can only be applied to wires in the |0)-state.)

Semantics
We extend [-] with [I-] = |0) and [+] = (0.

Universal for isometries
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Boundedness of the equational theory with ancillae

Theorem [CDPV CSL'24]

Adding those three equations makes the equational theory complete for
quantum circuits with ancillae.
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Boundedness of the equational theory with ancillae

Theorem [CDPV CSL'24]

Adding those three equations makes the equational theory complete for
quantum circuits with ancillae.

}7
== " ) Plo)- = +— ) g =

— = P(5) ' — =
P(y) P($)HDP(-5) —1P)—
In these more general settings, ' = }n is derivable for n > 4.

16 /16



Boundedness of the equational theory with ancillae

Theorem [CDPV CSL'24]

Adding those three equations makes the equational theory complete for
quantum circuits with ancillae.

}7
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In these more general settings, ' = : }n is derivable for n > 4.
l-P(QTF) —

Hence, using ancillae, there is a complete equational theory made of equa-
tions acting on at most 3 wires.
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