Minimal Equational Theories for Quantum Circuits

LICS'24 39th Annual ACM/IEEE Symposium on Logic in Computer Science

Alexandre Clément*, <u>Noé Delorme</u>† and Simon Perdrix[†]

[∗]Universit´e Paris-Saclay, ENS Paris-Saclay, CNRS, Inria, LMF, 91190, Gif-sur-Yvette, France [†] Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

Quantum circuits are a rigourous graphical language used to represent quantum algorithms.

Just like boolean circuits are a rigourous graphical language used to represent classical algorithms.

Quantum circuits are a rigourous graphical language used to represent quantum algorithms.

Just like boolean circuits are a rigourous graphical language used to represent classical algorithms.

Quantum circuits as a graphical language

Quantum circuits are generated by

$$
-\overline{H} \qquad , \qquad -\overline{P(\varphi)} \qquad , \qquad \overline{\qquad \bigoplus \qquad } \qquad , \qquad \overline{\varphi}
$$

to form new circuits.

Quantum circuits are generated by

$$
-H \rightarrow -P(\varphi) \rightarrow \varphi \rightarrow 0
$$

and can be composed sequentially with \circ and in parallel with \otimes as

to form new circuits.

$$
\left(\begin{array}{c|c}\n\hline\n\hline\n\hline\n\downarrow\n\end{array} \circ \left(\begin{array}{c|c}\n\hline\n\hline\n\downarrow\n\end{array} \otimes \begin{array}{c}\n\hline\n\hline\n\hline\n\end{array} \right) \right) \quad = \quad \begin{array}{c|c}\n\hline\n\hline\n\hline\n\hline\n\hline\n\hline\n\end{array} \otimes \begin{array}{c}\n\hline\n\hline\n\hline\n\end{array} \otimes \begin{array}{c}\n\hline\n\hline\n\end{array} \otimes \begin{array}{c}\n\hline\n\end{array} \otimes \begin{array}{c}\n\hline\n\end{array} \otimes \begin{array}{c}\n\hline\n\end{array} \otimes \begin{array}{c}\n\hline\n\end{array} \otimes \begin{array}{c}\n\hline\n\end{array} \otimes \begin{array}{c}\n\hline\n\end{array} \otimes \begin{array}{c}\n\hline
$$

Quantum circuits are generated by

$$
-H \rightarrow -P(\varphi) \rightarrow \varphi \rightarrow 0
$$

and can be composed sequentially with \circ and in parallel with \otimes as

to form new circuits.

$$
\left(\begin{array}{c|c}\n\hline\n\end{array}\n\right) \circ \left(\begin
$$

Standard interpretation of quantum circuits

circuits \neq matrices

Standard interpretation of quantum circuits

circuits \neq matrices

Formally, quantum circuits are defined as a symmetric monoidal category, which ensure some deformation equations such that

$$
-P(\varphi) \qquad \circ \qquad = -P(\varphi) \qquad \qquad \text{or} \qquad \qquad \text{and} \qquad \text{or} \qquad \text{or}
$$

This framework captures the intuitive behaviour of wires by ensuring that

Formally, quantum circuits are defined as a symmetric monoidal category, which ensure some deformation equations such that

$$
-P(\varphi) \qquad \circ \qquad = -P(\varphi) \qquad \qquad \text{or} \qquad \qquad \text{and} \qquad \text{or} \qquad \text{or}
$$

This framework captures the intuitive behaviour of wires by ensuring that circuits are defined "up to deformation".

Controlled gates as shortcut notations

We use the standard bullet notation for controlled gates.

gate is a shortcut containing several instances of n-controlled gates.

We use the standard bullet notation for controlled gates.

Controlled gates can be constructed inductively. The $(n + 1)$ -controlled gate is a shortcut containing several instances of n-controlled gates.

Distinct circuits can have the same interpretation.

$$
\left[\begin{array}{c|c}\n-P(\frac{\pi}{2}) & P(-\frac{\pi}{2}) \\
\hline\n-P(\frac{\pi}{2}) & P(-\frac{\pi}{2})\n\end{array}\right] = \left[\begin{array}{c|c}\n\hline\n\end{array}\right] = \begin{pmatrix}\n1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1\n\end{pmatrix}
$$

Given a quantum algorithm, which circuit is the best?

Motivations:

- Resource optimisation (for instance the number of gates).
- Hardware-constraint satisfaction (for instance topological constraints).
- Verification, circuit equivalence testing.

Distinct circuits can have the same interpretation.

$$
\left[\begin{array}{c|c}\n-P(\frac{\pi}{2}) & P(-\frac{\pi}{2}) \\
\hline\n-P(\frac{\pi}{2}) & P(-\frac{\pi}{2})\n\end{array}\right] = \left[\begin{array}{c|c}\n\hline\n\end{array}\right] = \begin{array}{c|c}\n1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1\n\end{array}\right]
$$

Given a quantum algorithm, which circuit is the best?

Motivations:

- Resource optimisation (for instance the number of gates).
- Hardware-constraint satisfaction (for instance topological constraints).
- Verification, circuit equivalence testing.

We can use simple equations such that,

Soundness

Any derivable equation is true. $\forall C_1, C_2 : \Gamma \vdash C_1 = C_2 \implies \Gamma C_1 \rVert = \Gamma C_2 \rVert$

Soundness

Any derivable equation is true. $\forall C_1, C_2 : \Gamma \vdash C_1 = C_2 \implies \Gamma C_1 \equiv \Gamma C_2 \rceil$

Completeness

Any true equation is derivable. $\forall C_1, C_2 : \mathbb{C}_1 \mathbb{C} = \mathbb{C}_2 \mathbb{C} \implies \Gamma \vdash C_1 = C_2$

Soundness

Any derivable equation is true. $\forall C_1, C_2 : \Gamma \vdash C_1 = C_2 \implies \Gamma C_1 \rVert = \Gamma C_2 \rVert$

Completeness

Any true equation is derivable. $\forall C_1, C_2 : \mathbb{C}_1 \mathbb{C} = \mathbb{C}_2 \mathbb{C} \implies \Gamma \vdash C_1 = C_2$

Complete and sound equational theory [CHMPV LICS'23]

Some easy and some intricate equations

Question: Can we simplify the equational theory even more?

Theorem

Minimality

Question: Can we simplify the equational theory even more?

Theorem

Minimality

Question: Can we simplify the equational theory even more?

Theorem

This equational theory is complete, sound and minimal.

Minimality

Question: Can we simplify the equational theory even more?

Theorem

This equational theory is complete, sound and minimal.

Minimality

All equations are independents.

$$
\forall (C_1 = C_2) \in \Gamma \quad : \quad \Gamma \backslash \{C_1 = C_2\} \nvdash C_1 = C_2
$$

Every instances of $\frac{1}{\sqrt{P(2\pi)}} = \frac{1}{\sqrt{P(2\pi)}}$ $\Big\} n \geq 3$ are necessary (for every $n \geq 3$).

Theorem

Every instances of
$$
\frac{1}{\sqrt{P(2\pi)}} = \frac{1}{\sqrt{P(2\pi)}}\}
$$
 $n \ge 3$ are necessary (for every $n \ge 3$).

Theorem

There is no complete equational theory for quantum circuits made of equations acting on a bounded number of wires.

More precisely, any complete equational theory for quantum circuits has

Every instances of
$$
\frac{1}{\sqrt{P(2\pi)}} = \frac{1}{\sqrt{P(2\pi)}}\}
$$
 $n \ge 3$ are necessary (for every $n \ge 3$).

Theorem

There is no complete equational theory for quantum circuits made of equations acting on a bounded number of wires.

More precisely, any complete equational theory for quantum circuits has at least one equation acting on *n* wires for any $n \in \mathbb{N}$.

Proof sketch

Alternative interpretation

For any $k \in \mathbb{N}$, for any quantum circuit C, let $\llbracket \mathcal{C} \rrbracket_k^{\sharp} \in [0, 2\pi)$ be inductively defined as inductively defined as

$$
\llbracket C_2 \circ C_1 \rrbracket_k^{\sharp} = \llbracket C_1 \otimes C_2 \rrbracket_k^{\sharp} = \llbracket C_2 \rrbracket_k^{\sharp} + \llbracket C_1 \rrbracket_k^{\sharp} \bmod 2\pi
$$

$$
\llbracket \cdots \rrbracket_k^{\sharp} = \llbracket - \cdots \rrbracket_k^{\sharp} = 0 \qquad \llbracket \odot \rrbracket_k^{\sharp} = 2^k \varphi \bmod 2\pi \qquad \llbracket \overline{-H} \rrbracket_k^{\sharp} = 2^{k-1} \pi \bmod 2\pi
$$

$$
\llbracket \overline{-H} \rrbracket_k^{\sharp} = 2^{k-1} \varphi \bmod 2\pi
$$

$$
\llbracket \overline{-H} \rrbracket_k^{\sharp} = 2^{k-1} \varphi \bmod 2\pi
$$

Any sound equation involving circuits acting on at most $n - 1$ wires is also sound according to $\llbracket \cdot \rrbracket^\sharp_{n-1}$.

$$
\left[\begin{array}{c}\n\overline{\left(\frac{1}{\cdot}\right)} \\
-\frac{1}{\cdot}\left(2\pi\right)\end{array}\right]_{n=1}^{\sharp} = \pi \neq 0 = \left[\begin{array}{c}\n\overline{\cdot} \\
\end{array}\right]_{n=1}^{\sharp}
$$

Proof sketch

Alternative interpretation

For any $k \in \mathbb{N}$, for any quantum circuit C, let $\llbracket \mathcal{C} \rrbracket_k^{\sharp} \in [0, 2\pi)$ be inductively defined as inductively defined as

$$
\llbracket C_2 \circ C_1 \rrbracket_k^{\sharp} = \llbracket C_1 \otimes C_2 \rrbracket_k^{\sharp} = \llbracket C_2 \rrbracket_k^{\sharp} + \llbracket C_1 \rrbracket_k^{\sharp} \bmod 2\pi
$$

$$
\llbracket \cdots \rrbracket_k^{\sharp} = \llbracket - \cdots \rrbracket_k^{\sharp} = 0 \qquad \llbracket \odot \rrbracket_k^{\sharp} = 2^k \varphi \bmod 2\pi \qquad \llbracket \overline{-H} \rrbracket_k^{\sharp} = 2^{k-1} \pi \bmod 2\pi
$$

$$
\llbracket \overline{-H} \rrbracket_k^{\sharp} = 2^{k-1} \varphi \bmod 2\pi
$$

$$
\llbracket \overline{-H} \rrbracket_k^{\sharp} = 2^{k-1} \varphi \bmod 2\pi
$$

Any sound equation involving circuits acting on at most $n - 1$ wires is also sound according to $\llbracket \cdot \rrbracket_{n-1}^{\sharp}$.

$$
\left[\begin{array}{c}\n\overline{\left(\begin{array}{c}\n\overline{\left(\frac{1}{\lambda}\right)}\n\end{array}\right)}_{n}^{*}\right]_{n=1}^{*} = \pi \neq 0 = \left[\begin{array}{c}\n\overline{\left(\begin{array}{c}\n\overline{\left(\frac{1}{\lambda}\right)}\n\end{array}\right)}_{n=1}^{*}\n\end{array}\right]
$$

Proof sketch

Alternative interpretation

For any $k \in \mathbb{N}$, for any quantum circuit C, let $\llbracket \mathcal{C} \rrbracket_k^{\sharp} \in [0, 2\pi)$ be inductively defined as inductively defined as

$$
\llbracket C_2 \circ C_1 \rrbracket_k^{\sharp} = \llbracket C_1 \otimes C_2 \rrbracket_k^{\sharp} = \llbracket C_2 \rrbracket_k^{\sharp} + \llbracket C_1 \rrbracket_k^{\sharp} \bmod 2\pi
$$

$$
\llbracket \cdots \rrbracket_k^{\sharp} = \llbracket - \cdots \rrbracket_k^{\sharp} = 0 \qquad \llbracket \odot \rrbracket_k^{\sharp} = 2^k \varphi \bmod 2\pi \qquad \llbracket \overline{-H} \rrbracket_k^{\sharp} = 2^{k-1} \pi \bmod 2\pi
$$

$$
\llbracket \overline{-H} \rrbracket_k^{\sharp} = 2^{k-1} \varphi \bmod 2\pi
$$

$$
\llbracket \overline{-H} \rrbracket_k^{\sharp} = 2^{k-1} \varphi \bmod 2\pi
$$

Any sound equation involving circuits acting on at most $n - 1$ wires is also sound according to $\llbracket \cdot \rrbracket_{n-1}^{\sharp}$.

However,

$$
\left[\begin{array}{c}\n\bullet \\
\hline\n-\rho(2\pi)\n\end{array}\right]_n^{\sharp} = \pi \neq 0 = \left[\begin{array}{c}\n\bullet \\
\hline\n\end{array}\right]_n^{\sharp} =
$$

Extension to quantum circuits with ancillae

Quantum circuits with ancillae are generated by

 \vdash and \lnot

together with

respectively denoting wire initialisation and wire termination.

(The generator -1 can only be applied to wires in the $|0\rangle$ -state.)

We extend $\llbracket \cdot \rrbracket$ with $\llbracket \leftarrow \rrbracket = \ket{0}$ and $\llbracket \neg \rrbracket = \bra{0}$.

Universal for isometries

Extension to quantum circuits with ancillae

Quantum circuits with ancillae are generated by

 \vdash and \lnot

together with

respectively denoting wire initialisation and wire termination.

(The generator -1 can only be applied to wires in the $|0\rangle$ -state.)

We extend $\llbracket \cdot \rrbracket$ with $\llbracket \leftarrow \rrbracket = \ket{0}$ and $\llbracket \neg \rrbracket = \bra{0}$.

Universal for isometries

Extension to quantum circuits with ancillae

Quantum circuits with ancillae are generated by

 \vdash and \lnot

together with

respectively denoting wire initialisation and wire termination.

(The generator -1 can only be applied to wires in the $|0\rangle$ -state.)

Semantics

We extend $\lbrack \cdot \rbrack$ with $\lbrack \lbrack \cdot \rbrack = \lbrack 0 \rangle$ and $\lbrack \lbrack \cdot \rbrack = \lbrack 0 \rbrack$.

Universal for isometries

Boundedness of the equational theory with ancillae

Theorem [CDPV CSL'24]

Adding those three equations makes the equational theory complete for quantum circuits with ancillae.

$$
H = \Box \qquad , \qquad H^{\rho}(\varphi) = H \qquad , \qquad H^{\rho} = \Box
$$

Using ancillae, we can build controlled gates without dividing the angles.

In these more general settings, $\overline{\frac{1}{P(2\pi)}} = \overline{\underline{\quad \vdots \quad }}$ } n is derivable for $n \geq 4$.

Hence, using ancillae, there is a complete equational theory made of equa-

Theorem [CDPV CSL'24]

Adding those three equations makes the equational theory complete for quantum circuits with ancillae.

$$
H = \mathbb{Z} \qquad , \qquad H_{\text{max}} = H - \qquad , \qquad H_{\text{max}} = \frac{H}{\sqrt{2}} = \frac{H}{\sqrt{2}}.
$$

Using ancillae, we can build controlled gates without dividing the angles.

In these more general settings,

Hence, using ancillae, there is a complete equational theory made of equa-

Theorem [CDPV CSL'24]

Adding those three equations makes the equational theory complete for quantum circuits with ancillae.

$$
H = \mathbb{Z} \qquad , \qquad H_{\text{max}} = H - \qquad , \qquad H_{\text{max}} = \frac{H}{\sqrt{2}} = \frac{H}{\sqrt{2}}.
$$

Using ancillae, we can build controlled gates without dividing the angles.

Hence, using ancillae, there is a complete equational theory made of equa-

Theorem [CDPV CSL'24]

Adding those three equations makes the equational theory complete for quantum circuits with ancillae.

$$
H = \mathbb{E} \qquad , \qquad H_{\text{max}} = H \qquad , \qquad H_{\text{max}} = \frac{1}{\sqrt{2}} \qquad \frac{1}{
$$

Using ancillae, we can build controlled gates without dividing the angles.

In these more general settings, $P(2\pi)$ = . . . $n \geq 4$.

Hence, using ancillae, there is a complete equational theory made of equations acting on at most 3 wires.

Thanks

[arXiv:2311.07476](https://arxiv.org/abs/2311.07476)

Minimal Equational Theories for Quantum Circuits Alexandre Clément, Noé Delorme and Simon Perdrix