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What is it all about?

Quantum circuits are a rigourous graphical representation of quantum al-

gorithms.
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Quantum circuits as a graphical language

Formally, graphical languages are defined within the prop formalism with
some deformation rules such that

P(p)}-o = —P(y) o X X =

This framework captures the intuitive behaviour of wires by ensuring that
circuits are defined “up to deformation”.
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Other usual gates as shortcut notations

There are only four different kinds of generators
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Other usual gates as shortcut notations

There are only four different kinds of generators
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Other gates can be defined as shortcut notations.
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Standard interpretation of quantum circuits

Interpretation
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Distinct circuits can have the same interpretation.
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Distinct circuits can have the same interpretation.
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Given a quantum algorithm, which circuit is the best?

Motivations:

- Resource optimisation (for instance the number of gates).

- Hardware-constraint satisfaction (for instance topological constraints).
- Verification, circuit equivalence testing.
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Using equations to transform circuits

We can use simple axioms such that,
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Using equations to transform circuits

We can use simple axioms such that,
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Complete and sound equational theory

Is there an equational theory (i.e. a set of axioms) I' from which we can
derive any true equation and only true equations?

Soundness

Any derivable equation is true.
VG, 6 - THEG=6 = [G]=[C]

Completeness

Any true equation is derivable.
VCl, G : [[Cl]] = HCZ]] = TT-G=G

Previous work [Clément,Heurtel,Mansfield,Perdrix,Valiron LICS’23]:
The first complete and sound equational theory.

8/17



'23]

)
S
=
>
Q.
>
I
=,
>
P
o
Q
=
-
®
£
2

Complete and sound equat

P(e)

P(¢)

%

%

P(8s)

Rx(2)

)

(

1T

P

Rx(a1)P(02)

1

9/17



ions

equat

v
=
o
102}

o
=
>,
7]
©
0
)
=
o

wn

P12

® @ =

DE
P(8s)

Rx(2)

Br)

(

P

iH
Rx(1)—P(az2)

P(

3)
2

X
P

)

(

S
R (5

PG

2

HH-

10/17



First contribution

Simplification of the equational theory



[72]
€
=

t

Simplifica

= (ptee

P(

Rx(82)[—P(5s)

(51)

1T

P

Rx(a1)P(02)

3)
2

3)HRxG)HP(

= P( z

HH-

1

11/17



P(61)HRx(82)[P(53)
4

P(o)
[H

[HHH- =
©
=
Rx(o)]{P(02)
1d

=
P2)
A=

Eley

P

)

5)

Rx(

|
|| SRR

Z6)

[72]
€
=

&

Simplifica

11/17



P(B1)—Rx (B2)P(5s)

P(e)

%

Rx(a1)HP(az2)

=
P2)
AN

Eley

P(

)

s

7 7 :

Rx(

)

G

[72]
€
=

&

-

Simplifica

11/17



Simplifications
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Simplified complete and sound equational th

= B pmREHPE)

Theorem (Completeness)

This equational theory is complete, i.e. any two equivalent circuits can
be transformed into each other.
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Second contribution

Extension of the equational theory



Extension to quantum circuits with ancillae

Quantum circuits with ancillae are generated by
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Extension to quantum circuits with ancillae

Quantum circuits with ancillae are generated by

SR = R G

together with

= and —
respectively denoting qubit initialisation and qubit destruction.

(The generator — can only be applied to qubits in the |0)-state.)

Semantics
We extend [-] with [I-] = |0) and [+] = (0.

Universal for isometries
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Equational theory for quantum circuits with ancillae
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Equational theory for quantum circuits with ancillae
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Theorem (Completeness)

Adding those three equations makes the equational theory complete for
quantum circuits with ancillae.
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Equational theory for quantum circuits with ancillae
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Proposition
The big rule can be replaced by its 2-qubits version, leading to an

equational theory acting on a bounded number of qubits.
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Alternative definition of multi-controlled gates

Mutli-controlled gates are defined inductively
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Alternative definition of multi-controlled gates

Mutli-controlled gates are defined inductively

Problem: Cannot apply inductive hypothesis as angles are divided by 2.

Solution: Using ancillae, we can prove
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Conclusion

e Simplification of the original equational theory, in particular removed
two intricate rules.
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Conclusion

e Simplification of the original equational theory, in particular removed
two intricate rules.

e Introducing new techniques to reason on quantum circuits.
e Extension of the completeness result to circuits with ancillae.

e In these extended settings, the equational theory is made only of
equations acting on at most 3 qubits.

e Other contribution: extension of the completeness result to circuits
with discard (where any qubit can be discarded).
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Ongoing work [arXiv:2311.07476]

Replace the big rule by something simple.
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Ongoing work [arXiv:2311.07476]

Replace the big rule by something simple.

Prove the minimality of the resulting equational theory.

Theorem (Minimality)

Each equation of the equational theory is necessary.
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https://arxiv.org/abs/2311.07476

Thanks
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https://doi.org/10.4230/LIPIcs.CSL.2024.20
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